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Cenario para o surgimento de Caos
em Sistemas Quase Integraveis

 Teorema KAM — Superficies toroidais invariantes
sobrevivem a perturbacao. Trajetorias caodticas
ocupam regioes de superficies destruidas.

« Teorema Poincare-Birkhoff — llhas sao criadas nas
regides com superficies toroidais racionais.



Superficies toroidais
Sistemas integraveis
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Figure 3.1. Motion of a phase space point for an integrable system with two degrees
of freedom. (a) The motion lies on a torus J; = const., J, = const. (b) Illustrating
trajectory intersections with a surface of section 0, = const. after a large number of

such intersections.



Teorema KAM (Teorema Fundamental)
H(J, 0) = Hy(J) + €H,(J, 0)

Sistema quase integravel com superficies toroidais remanescentes

Nevertheless, it 1s possible to prove a theorem (the KAM theorem) that,
provided certain conditions are satisfied (to be enumerated below), there
exists an invariant torus (J, #) parametrized by &, satisfying the relations

J=J, + v(E, ¢€) (3.2.1a)
and
0=E&+ ué,e). (3.2.1b)

Here # and v are periodic in & and vanish for € =0, and §: o, the
unperturbed frequencies on the torus. The conditions to be satisfied are



The conditions to be satisfied are

(1) the linear independence of the frequencies
Y mwyJ) # 0 (3.2.2)

over some domain of J (sufficient nonlinearity), where the w; are the
components of @ = dH,/dJ and the m, are the components of the integer
vector m,

(2) a smoothness condition on the perturbation (sufficient number of
continuous derivatives of H,);

(3) initial conditions sufficiently far from resonance to satisfy

im-@| = y|m| " (3.2.3)

for all m, where t is dependent on the number of degrees of freedom and

the smoothness of H,, and y is dependent on €, on the magnitude of the
perturbation Hamiltonian H;, and on the nonlinearity G of the unper-
turbed Hamiltonian H,,.



Since (3.2.3) cannot be met for y too large, and y increases with €, |H,|, and
1/G, there is a condition of sufficiently small perturbation for KAM tori to
exist. Conditions (1) and (2) also imply a condition of moderate nonlinearity.
If the conditions of the theorem are met, then the circle of a twist mapping
perturbs to a near-circle, as shown 1n Fig. 3.2a, without change of topology.
This is the intersection of a KAM torus with a surface of section.

The theorem was proved by Arnold (1961, 1962, 1962b) for analytic H, (all
derivatives existing), following a conjecture by Kolmogorov (1954), and by
Moser (1962) for a sufficient number of continuous derivatives. It provides
the basis for the existence of invariants in nonlinear coupled systems. The
theorem is generally called the KAM theorem in recognition of their work.
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Figure 3.2. Conditions for the KAM theorem to hold. (a) Illustration of the sufficient
nonlinearity condition discussed in the text; the perturbed curve lies near the
unperturbed curve. (b) Illustration of the smoothness condition; the region between
primary resonances is examined for secondary resonances. (¢) The action region
between two primary resonances converted to a frequency scale using Aw = GAJ.
Secondary resonances are shown hatched. For sufficient smoothness, the secondary

resonances are isolated.



We continue our examination of the perturbed twist map, given by (3.1.13).
We have seen that if we examine irrational surfaces sufficiently far from the
rational o = r/s, the KAM theorem tells us that the surfaces retain their
topology and are only slightly deformed from the unperturbed circles.
However, on the rational surface o = r/s, and in a neighborhood about it,
the KAM theorem fails. For this region we can fall back on an earlier
theorem for some clue to the structure of the mapping near rational o.



Poincaré—Birkhoff Theorem. For the unperturbed twist mapping (3.1.8), we
have seen that any point on the circle a(J) = r/s is a fixed point of the
mapping with period s (see Fig. 3.1b). The theorem states that for some even
multiple of s, i.e., 2ks (k = 1, 2, .. .), fixed points remain after the perturbation.

The theorem is easy to prove and the proof can be outlined, using Fig. 3.3,
as follows.

If we assume for definiteness that a(J) increases outward (strong spring),
then there is a KAM curve outside the rational surface, which for s iterations
of the mapping maps counterclockwise (outside arrows) a > r/s, and one
inside the rational surface, which maps clockwise (inside arrows) o < r/s.
Therefore between these two there must be a curve (solid line, not a KAM
curve) whose angular coordinate 0 is unchanged after s iterations of the
mapping. These points are then radially mapped from the solid curve to

some dashed curve (not a KAM curve), as shown in the figure. Due to the
area-preserving property of the transformation, the solid and dashed curves
must enclose an equal area. This is only possible if the two curves cross each
other an even number of times. Each crossing when iterated s times returns
to its initial position, so each of the s iterates is itself a fixed point. Thus, for
an even number of crossings, there must be 2ks such points, which are the
Poincaré-Birkhoff fixed points.
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Figure 3.3. Illustrating the Poincaré—Birkhoff theorem that some fixed points are
preserved in a small perturbation. The intersections of the heavy solid and dashed
curves are the preserved fixed points.



The theorem makes no claim about the value of the integer k, although
generally k = 1. If we further examine the mapping in the neighborhood of
the fixed points, we notice in Fig. 3.3 that there are two distinct types of
behavior. Near the fixed point labeled elliptic, points with « # r/s, tend to
connect with the a = r/s radial transformation, and thus to circle about the
fixed point. Near the fixed point labeled hyperbolic, on the other hand,
successive transformations take the points further from the neighborhood of
the fixed point. This behavior has already been noted for the phase space
motion of a simple pendulum or nonlinear spring in Section 1.3. We found

chains of alternating elliptic and hyperbolic singular points, with regular
phase space trajectories encircling the elliptic fixed points and a separatrix
trajectory connecting the hyperbolic points. For small perturbation ampli-
tudes, the alternation of elliptic and hyperbolic singular points about the
resonance curve 1s a generic property of the system.
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Figure 3.5. Regular and stochastic trajectories for a Hamiltonian with relatively large
perturbation (a) near the primary fixed point; (b) expanded (and circularized) scale
near a second-order fixed point.



Exemplo Numerico

Here we 1illustrate

some of the phenomena previously discussed in this section with two examples,
the first being the quadratic twist mapping studied by Hénon (1969):

X4 Xo Xo COS Y — (yo — X3) sin ¥
(D)D) o
vy Yo Xo SN Y + (yy — x3) cos ¥



10

| uTy
-
|
i t o
1
!
ﬁ
_
s
- ...Aﬂ
, |
_ _ , K=
< " " ST

(a)



0.200

0.175

¥y 0.150

0.125.

(b) 0.100

0.525 0.550 0.575 0.600

Figure 3.6. Trajectories of the Hénon mapping [Eqs. (3.2.40)] with « = 0.2114. (a)
Mapping including the origin and the first island chain; (b) expanded mapping near
a separatrix of the first island chain. Each island chain, etc., is generated from a single
(X0, ¥o) (after Hénon, 1969).



3.2.3 Birkhoff Fized Point Theorem

We have seen that, for € = 0, the points on a given circle become dense in
lim,, .o 1 for irrational winding number w and are composed of discrete
periodic points if w is a rational fraction. If w = ﬁ, the points are fixed
points under the mapping T3". The behavior of these fixed points under
the perturbed mapping 7, is extremely important and is the subject of the
Birkhoff fixed point theorem [Birkhoff 1927], [Berry 1978]. Let us consider a
circle, €, with winding number w = {7’ and two neighboring circles, C'y. and
C_, with irrational winding numbers w, > % and w_ < f';, respectively
(see Fig. 3.2.2.a).
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Figure 3.2.2. (a) The case ¢ = 0. C is a line of orbits with period M. C, and
C. are orbits with irrational winding number. Under T™ the periodic orbits are
fixed points, while C;. and C_ are mapped in opposite directions. (b) T* maps
C to orbit R, and maps R. to orbit TM R,. By area conservation, intersections
occur in an even number of places and are fixed points of TM. (¢) The direction
of flow shows that fixed points are alternating elliptic and hyperbolic.



under TM. Thus, all points of intersection are fixed points of TM. We see
then that the number of intersections must be an even multiple of M, i.e.,
there are 2kM fixed points of TM, where k is an integer. From the direc-
tion of the flow of phase points in the neighborhood of these fixed points,
we see that half must be elliptic fixed points and half must be hyperbolic
fixed points (see Fig. 3.2.2.c). If we move the origin of our mapping to any
elliptic point, this picture will repeat itself (see Fig. 3.2.3).
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Figure 3.2.5. The stable and unstable manifolds, W* and W™, of hyperbolic fixed
points for integrable systems join smoothly. (a) A point r on W) and W) is
mapped to the same fixed point, P, by T, and T, *. (b) A point r on W'*) and
W) is mapped to fixed point P by T, and to fixed point Q by 7.



